Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731484

RESUMO

In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.


Assuntos
Antioxidantes , Emulsificantes , Emulsões , Ácido Glicirrízico , Simulação de Acoplamento Molecular , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Emulsões/química , Emulsificantes/química , Emulsificantes/farmacologia , Ratos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Química Verde , Humanos , Ratos Sprague-Dawley , Nanopartículas/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Fabaceae/química , Masculino , Tamanho da Partícula , Movimento Celular/efeitos dos fármacos
2.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731501

RESUMO

Bacterial infection is a thorny problem, and it is of great significance to developing green and efficient biological antibacterial agents that can replace antibiotics. This study aimed to rapidly prepare a new type of green antibacterial nanoemulsion containing silver nanoparticles in one step by using Blumea balsamifera oil (BBO) as an oil phase and tea saponin (TS) as a natural emulsifier and reducing agent. The optimum preparation conditions of the AgNPs@BBO-TS NE were determined, as well as its physicochemical properties and antibacterial activity in vitro being investigated. The results showed that the average particle size of the AgNPs@BBO-TS NE was 249.47 ± 6.23 nm, the PDI was 0.239 ± 0.003, and the zeta potential was -35.82 ± 4.26 mV. The produced AgNPs@BBO-TS NE showed good stability after centrifugation and 30-day storage. Moreover, the AgNPs@BBO-TS NE had an excellent antimicrobial effect on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These results demonstrated that the AgNPs@BBO-TS NE produced in this study can be used as an efficient and green antibacterial agent in the biomedical field.


Assuntos
Antibacterianos , Emulsões , Química Verde , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Staphylococcus aureus/efeitos dos fármacos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Saponinas/química , Saponinas/farmacologia
3.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731569

RESUMO

Skin wounds, leading to infections and death, have a huge negative impact on healthcare systems around the world. Antibacterial therapy and the suppression of excessive inflammation help wounds heal. To date, the application of wound dressings, biologics and biomaterials (hydrogels, epidermal growth factor, stem cells, etc.) is limited due to their difficult and expensive preparation process. Cinnamomum burmannii (Nees & T. Nees) Blume is an herb in traditional medicine, and its essential oil is rich in D-borneol, with antibacterial and anti-inflammatory effects. However, it is not clear whether Cinnamomum burmannii essential oil has the function of promoting wound healing. This study analyzed 32 main components and their relative contents of essential oil using GC-MS. Then, network pharmacology was used to predict the possible targets of this essential oil in wound healing. We first proved this essential oil's effects in vitro and in vivo. Cinnamomum burmannii essential oil could not only promote the proliferation and migration of skin stromal cells, but also promote M2-type polarization of macrophages while inhibiting the expression of pro-inflammatory cytokines. This study explored the possible mechanism by which Cinnamomum burmannii essential oil promotes wound healing, providing a cheap and effective strategy for promoting wound healing.


Assuntos
Cinnamomum , Óleos Voláteis , Cicatrização , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cicatrização/efeitos dos fármacos , Cinnamomum/química , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Movimento Celular/efeitos dos fármacos , Pele/efeitos dos fármacos , Humanos
4.
Genes (Basel) ; 15(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38540346

RESUMO

Blumea balsamifera (L.) DC., an important economic and medicinal herb, has a long history of being used as a traditional Chinese medicine. Its leaves have always been used as a raw material for the extraction of essential oils, comprising large amounts of terpenoids, which have good therapeutic effects on many diseases, such as eczema, bacterial infection, and hypertension. However, the genetic basis of terpenoid biosynthesis in this plant is virtually unknown on account of the lack of genomic data. Here, a combination of next-generation sequencing (NGS) and full-length transcriptome sequencing was applied to identify genes involved in terpenoid biosynthesis at five developmental stages. Then, the main components of essential oils in B. balsamifera were identified using GC-MS. Overall, 16 monoterpenoids and 20 sesquiterpenoids were identified and 333,860 CCS reads were generated, yielding 65,045 non-redundant transcripts. Among these highly accurate transcripts, 59,958 (92.18%) transcripts were successfully annotated using NR, eggNOG, Swissprot, KEGG, KOG, COG, Pfam, and GO databases. Finally, a total of 56 differently expressed genes (DEGs) involved in terpenoid biosynthesis were identified, including 38 terpenoid backbone genes and 18 TPSs, which provide a significant amount of genetic information for B. balsamifera. These results build a basis for resource protection, molecular breeding, and the metabolic engineering of this plant.


Assuntos
Óleos Voláteis , Transcriptoma , Transcriptoma/genética , Terpenos/metabolismo , Monoterpenos , RNA-Seq
5.
Eur J Pharmacol ; 968: 176381, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38341077

RESUMO

Diabetes mellitus causes brain microvascular endothelial cell (MEC) damage, inducing dysfunctional angiogenic response and disruption of the blood-brain barrier (BBB). Canagliflozin is a revolutionary hypoglycemic drug that exerts neurologic and/or vascular-protective effects beyond glycemic control; however, its underlying mechanism remains unclear. In the present study, we hypothesize that canagliflozin ameliorates BBB permeability by preventing diabetes-induced brain MEC damage. Mice with high-fat diet/streptozotocin-induced diabetes received canagliflozin for 8 weeks. We assessed vascular integrity by measuring cerebrovascular neovascularization indices. The expression of specificity protein 1 (Sp1), as well as tight junction proteins (TJs), phosphorylated AMP-activated protein kinase (p-AMPK), and adenosine A2A receptors was examined. Mouse brain MECs were grown in high glucose (30 mM) to mimic diabetic conditions. They were treated with/without canagliflozin and assessed for migration and angiogenic ability. We also performed validation studies using AMPK activator (AICAR), inhibitor (Compound C), Sp1 small interfering RNA (siRNA), and adenosine A2A receptor siRNA. We observed that cerebral pathological neovascularization indices were significantly normalized in mice treated with canagliflozin. Increased Sp1 and adenosine A2A receptor expression and decreased p-AMPK and TJ expression were observed under diabetic conditions. Canagliflozin or AICAR treatment alleviated these changes. However, this alleviation effect of canagliflozin was diminished again after Compound C treatment. Either Sp1 siRNA or adenosine A2A receptor siRNA could increase the expression of TJs. Luciferase reporter assay confirmed that Sp1 could bind to the adenosine A2A receptor gene promoter. Our study identifies the AMPK/Sp1/adenosine A2A receptor pathway as a treatment target for diabetes-induced cerebrovascular injury.


Assuntos
Diabetes Mellitus , Hiperglicemia , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Receptor A2A de Adenosina/metabolismo , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Diabetes Mellitus/metabolismo , RNA Interferente Pequeno/metabolismo
6.
Front Plant Sci ; 14: 1285616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034556

RESUMO

Introduction: Ainaxiang (Blumea balsamifera (Linn.) DC.) is cultivated for the extraction of (-)-borneol and other pharmaceutical raw materials due to its abundant volatile oil. However, there is limited knowledge regarding the structural basis and composition of volatile oil accumulation in fresh B. balsamifera leaves. Methods: To address this problem, we compare the fresh leaves' morphology, microstructure, and volatile metabonomic at different development stages, orderly defined from the recently unfolded young stage (S1) to the senescent stage (S4). Results and discussion: Distinct differences were observed in the macro-appearance and microstructure at each stage, particularly in the B. balsamifera glandular trichomes (BbGTs) distribution. This specialized structure may be responsible for the accumulation of volatile matter. 213 metabolites were identified through metabolomic analysis, which exhibited spatiotemporal accumulation patterns among different stages. Notably, (-)-borneol was enriched at S1, while 10 key odor metabolites associated with the characteristic balsamic, borneol, fresh, and camphor aromas of B. balsamifera were enriched in S1 and S2. Ultra-microstructural examination revealed the involvement of chloroplasts, mitochondria, endoplasmic reticulum, and vacuoles in the synthesizing, transporting, and storing essential oils. These findings confirm that BbGTs serve as the secretory structures in B. balsamifera, with the population and morphology of BbGTs potentially serving as biomarkers for (-)-borneol accumulation. Overall, young B. balsamifera leaves with dense BbGTs represent a rich (-)-borneol source, while mesophyll cells contribute to volatile oil accumulation. These findings reveal the essential oil accumulation characteristics in B. balsamifera, providing a foundation for further understanding.

7.
Nat Prod Res ; : 1-4, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526578

RESUMO

Sabia parviflora (SP, "xiao hua qing feng teng" in Chinese) was recorded as an important ethnic medicine to be used for treating viral hepatitis. The antiviral activity of four SP extracts and potent antiviral compounds evaluated with cathepsin L protease (Cat L PR) and HIV-1 protease (HIV-1 PR). UPLC-HRMS was used for identifying the bioactive components. In addition, the possible inhibitory mechanism of the identified compounds on viral protease was further discussed by molecular docking. As a result, four extracts of SP exhibited inhibitory activity of HIV-1 PR and Cat L PR with IC50 range from 0.015 to 0.80 mg/mL. Meanwhile, six compounds inhibited HIV-1 PR with IC50 range from 0.032 to 0.80 mg/mL. Moreover, procyanidin B2 had good affinity for HIV-1 PR and CatL PR protein, respectively. These findings suggest S. parviflora leaves can be used for treating HIV and procyanidin B2 may play a role in antiviral protease.

8.
Molecules ; 28(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570859

RESUMO

Nanoemulsion is a new multi-component drug delivery system; the selection of different oil phases can give it special physiological activity, and play the role of "medicine and pharmaceutical excipients all-in-one". In this paper, we used glycyrrhizic acid as the natural surfactant, and Blumea balsamifera oil (BB) and tea tree oil (TTO) as the mixed oil phase, to obtain a new green functional composite nanoemulsion. Using the average particle size and polydispersion index (PDI) as the evaluation criteria, the effects of the oil ratio, oil content, glycyrrhizic acid concentration, and ultrasonic time on the nanoemulsion were systematically investigated. The stability and physicochemical properties and biological activities of BB-TTO NEs prepared via the optimum formulation were characterized. The optimal prescription was BB: TTO = 1:1, 5% oil phase, 0.7% glycyrrhizic acid, and 5 min ultrasonication time. The mean particle size, PDI, and zeta potential were 160.01 nm, 0.125, and -50.94 mV, respectively. The nanoemulsion showed non-significant changes in stability after centrifugation, dilution, and 120 days storage. These nanoemulsions were found to exhibit potential antibacterial and anti-inflammatory activities. The minimal inhibitory concentration (MIC) of BB-TTO NEs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa is 2975 µg/mL, 2975 µg/mL, and 5950 µg/mL, respectively. A lower level of inflammatory cell infiltration and proportion of fibrosis were found in the synovial tissue of AIA rats treated with BB-TTO NEs. These findings demonstrate that the BB-TTO NEs produced in this study have significant potential for usage in antibacterial and anti-inflammatory areas.


Assuntos
Óleo de Melaleuca , Ratos , Animais , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Ácido Glicirrízico/farmacologia , Escherichia coli , Sistemas de Liberação de Medicamentos , Antibacterianos/farmacologia , Antibacterianos/química , Emulsões/química
9.
Mol Neurobiol ; 60(12): 7060-7079, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37525083

RESUMO

Intracerebral hemorrhage (ICH) is a lethal stroke with high mortality or disability. However, effective therapy for ICH damage is generally lacking. Previous investigations have suggested that lysosomal protein transmembrane 5 (LAPTM5) is involved in various pathological processes, including autophagy, apoptosis, and inflammation. In this study, we aimed to identify the expression and functions of LAPTM5 in collagenase-induced ICH mouse models and hemoglobin-induced cell models. We found that LAPTM5 was highly expressed in brain tissues around the hematoma, and double immunostaining studies showed that LAPTM5 was co-expressed with microglia cells, neurons, and astrocytes. Following ICH, the mice presented increased brain edema, blood-brain barrier permeability, and neurological deficits, while pathological symptoms were alleviated after the LAPTM5 knockdown. Adeno-associated virus 9-mediated downregulation of LAPTM5 also improves ICH-induced secondary cerebral damage, including neuronal degeneration, the polarization of M1-like microglia, and inflammatory cascades. Furthermore, LAPTM5 promoted activation of the nuclear factor kappa-B (NF-κB) pathway in response to neuroinflammation. Further investigations indicated that brain injury improved by LAPTM5 knockdown was further exacerbated after the overexpression of receptor-interacting protein kinase 1 (RIP1), which is revealed to trigger the NF-κB pathway. In vitro experiments demonstrated that LAPTM5 silencing inhibited hemoglobin-induced cell function and confirmed regulation between RIP1 and LAPTM5. In conclusion, the present study indicates that LAPTM5 may act as a positive regulator in the context of ICH by modulating the RIP1/NF-κB pathway. Thus, it may be a candidate gene for further study of molecular or therapeutic targets.


Assuntos
Lesões Encefálicas , Animais , Camundongos , Lesões Encefálicas/complicações , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Hemorragia Cerebral/patologia , Hemoglobinas , Lisossomos/metabolismo , NF-kappa B/metabolismo
10.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298951

RESUMO

Scutellaria barbata D. Don (SB, Chinese: Ban Zhi Lian), a well-known medicinal plant used in traditional Chinese medicine, is rich in flavonoids. It possesses antitumor, anti-inflammatory, and antiviral activities. In this study, we evaluated the inhibitory activities of SB extracts and its active components against HIV-1 protease (HIV-1 PR) and SARS-CoV2 viral cathepsin L protease (Cat L PR). UPLC/HRMS was used to identify and quantify the major active flavonoids in different SB extracts, and fluorescence resonance energy transfer (FRET) assays were used to determine HIV-1 PR and Cat L PR inhibitions and identify structure-activity relationships. Molecular docking was also performed, to explore the diversification in bonding patterns of the active flavonoids upon binding to the two PRs. Three SB extracts (SBW, SB30, and SB60) and nine flavonoids inhibited HIV-1 PR with an IC50 range from 0.006 to 0.83 mg/mL. Six of the flavonoids showed 10~37.6% inhibition of Cat L PR at a concentration of 0.1 mg/mL. The results showed that the introduction of the 4'-hydroxyl and 6-hydroxyl/methoxy groups was essential in the 5,6,7-trihydroxyl and 5,7,4'-trihydroxyl flavones, respectively, to enhance their dual anti-PR activities. Hence, the 5,6,7,4'-tetrahydroxyl flavone scutellarein (HIV-1 PR, IC50 = 0.068 mg/mL; Cat L PR, IC50 = 0.43 mg/mL) may serve as a lead compound to develop more effective dual protease inhibitors. The 5,7,3',4'-tetrahydroxyl flavone luteolin also showed a potent and selective inhibition of HIV-1 PR (IC50 = 0.039 mg/mL).


Assuntos
COVID-19 , HIV-1 , Scutellaria , Extratos Vegetais/química , Flavonoides/farmacologia , Peptídeo Hidrolases , Scutellaria/química , Catepsina L , Simulação de Acoplamento Molecular , RNA Viral , SARS-CoV-2 , Endopeptidases , Relação Estrutura-Atividade
11.
ACS Biomater Sci Eng ; 9(10): 5843-5854, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37043416

RESUMO

Excessive inflammatory response after severe scalding is an important cause of delayed wound healing and is even life-threatening. Tumor necrosis factor α (TNF-α) is a key pro-inflammatory factor of skin trauma. Interacting with tumor necrosis factor receptor 1 (TNF-R1), TNF-α causes excessive inflammation and poor prognosis by activating NF-κB pathway. Antagonizing high levels of TNF-α is one of the therapeutic approaches for diseases associated with the overactivation of inflammatory responses. However, the available monoclonal antibodies are limited in their application due to their complex preparation process, high price, and the lack of cell targeting ability leading to systemic toxicity and side effects. In this study, by using a genetic bioengineering technique, we modified TNF-R1 on the cell membrane surface-derived nanovesicles (NVs). We confirmed that TNF-R1 NVs stably expressed TNF-R1 on the membrane surface and interacted with its ligand TNF-α. Furthermore, TNF-R1 NVs competitively antagonized the effect of TNF-α in the wound healing assay in vitro. In the scalded mouse model, TNF-R1 NVs were released continuously from the thermosensitive hydrogel Pluronic F-127, resulting in less inflammation and better wound healing. Our results revealed TNF-R1 NVs as promising cell-free therapeutic agents in alleviating TNF-α-mediated pro-inflammatory signaling and promoting wound repair.


Assuntos
Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Inflamação/tratamento farmacológico , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Nanopartículas/uso terapêutico , Queimaduras/tratamento farmacológico
12.
Mol Med ; 29(1): 44, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013491

RESUMO

BACKGROUND: Dysregulated long non-coding RNAs participate in the development of diabetic cerebral ischemia. This study aimed to investigate the underlying mechanism of lncRNA MALAT1 in diabetic cerebral ischemia. METHOD: Middle cerebral artery occlusion (MCAO) was performed to establish diabetic cerebral I/R in vivo. TTC and neurological deficits assessment were performed to assess cerebral ischemic injury. LDH was conducted to detect cytotoxicity. RT-qPCR and western blotting assays were applied to determine mRNA and protein expression. Flow cytometry was performed to detect the pyroptosis of BV2 cells. Immunofluorescence and FISH were conducted for subcellular localization of MALAT1 and STAT1. ELISA was performed to determine cytokine release. Dual luciferase reporter, RIP, and ChIP assays were used to validate the interaction between STAT1 and MALAT1/NLRP3. Diabetes aggravated cerebral injury in vivo and in vitro. Diabetic cerebral ischemia induced inflammatory response and inflammation-induced cell pyroptosis. RESULT: MALAT1 was overexpressed in diabetic cerebral ischemia models in vivo and in vitro. However, knockdown of MALAT1 suppressed inflammatory response and the pyroptosis of BV2 cells. Moreover, MALAT1 interacted with STAT1 to transcriptionally activate NLRP3. Knockdown of STAT1 significantly reversed the effects of MALAT1. Furthermore, STAT1 promotes the MALAT1 transcription. MALAT1 interacts with STAT1 to promote the pyroptosis of microglias induced by diabetic cerebral ischemia through activating NLRP3 transcription. CONCLUSION: Thus, knockdown of MALAT1 may be a potential promising therapy target for diabetic cerebral ischemia.


Assuntos
Isquemia Encefálica , Diabetes Mellitus , MicroRNAs , RNA Longo não Codificante , Traumatismo por Reperfusão , Isquemia Encefálica/genética , Microglia/metabolismo , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Traumatismo por Reperfusão/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/farmacologia , Animais
13.
Acta Pharm Sin B ; 12(4): 1913-1927, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847518

RESUMO

Mutations in the plant homeodomain-like finger protein 6 (PHF6) gene are strongly associated with acute myeloid (AML) and T-cell acute lymphoblastic leukemia (T-ALL). In this study, we demonstrated that PHF6 can bind to H3K9me3 and H3K27me1 on the nucleolar chromatin and recruit histone methyltransferase SUV39H1 to the rDNA locus. The deletion of PHF6 caused a decrease in the recruitment of SUV39H1 to rDNA gene loci, resulting in a reduction in the level of H3K9me3 and the promotion of rDNA transcription. The knockdown of either SUV39H1 or PHF6 significantly attenuated the effects of increase in H3K9me3 and suppressed the transcription of rDNA induced by the overexpression of the other interacting partner, thereby establishing an interdependent relationship between PHF6 and SUV39H1 in their control of rRNA transcription. The PHF6 clinical mutants significantly impaired the ability to bind and recruit SUV39H1 to the rDNA loci, resulting in an increase in rDNA transcription activity, the proliferation of in vitro leukemia cells, and the growth of in vivo mouse xenografts. Importantly, significantly elevated levels of pre-rRNA were observed in clinical AML patients who possessed a mutated version of PHF6. The specific rDNA transcription inhibitor CX5461 significantly reduced the resistance of U937 AML cells deficient in PHF6 to cytarabine, the drug that is most commonly used to treat AML. Collectively, we revealed a novel molecular mechanism by which PHF6 recruits methyltransferase SUV39H1 to the nucleolar region in leukemia and provided a potential therapeutic target for PHF6-mutant leukemia.

14.
J Biomed Nanotechnol ; 18(3): 898-908, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715909

RESUMO

Scars are common and intractable consequences after scalded wound healing, while monotherapy of epidermal growth factors does not solve this problem. Maintaining the stability of epidermal growth factors and promoting scarless healing of wounds is paramount. In this study, engineering cellular nanovesicles overexpressing PD-L1 proteins, biomimetic nanocarriers with immunosuppressive efficacy, were successfully prepared to encapsulate epidermal growth factors for maintaining its bioactivity. Remarkably, PD-L1 cellular nanovesicles encapsulating epidermal growth factors (EGF@PDL1 NVs) exerted desired therapeutic effect by attenuating the overactivation of T cell immune response and promoting skin cells migration and proliferation. Hence, EGF@PD-L1 NVs promoted wound healing and prevented scarring in deep second-degree scald treatment, demonstrating a better effect than using individual PD-L1 NVs or EGF. This research proved that EGF@PD-L1 NVs is considered an innovative and thorough therapy of deep second-degree scald.


Assuntos
Queimaduras , Fator de Crescimento Epidérmico , Antígeno B7-H1/metabolismo , Antígeno B7-H1/uso terapêutico , Queimaduras/tratamento farmacológico , Cicatriz , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/uso terapêutico , Humanos , Pele/metabolismo , Cicatrização
15.
Adv Sci (Weinh) ; 9(3): e2102634, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738731

RESUMO

There is an urgent need for developing new immunosuppressive agents due to the toxicity of long-term use of broad immunosuppressive agents after organ transplantation. Comprehensive sample analysis revealed dysregulation of FGL1/LAG-3 and PD-L1/PD-1 immune checkpoints in allogeneic heart transplantation mice and clinical kidney transplant patients. In order to enhance these two immunosuppressive signal axes, a bioengineering strategy is developed to simultaneously display FGL1/PD-L1 (FP) on the surface of small extracellular vesicles (sEVs). Among various cell sources, FP sEVs derived from mesenchymal stem cells (MSCs) not only enriches FGL1/PD-L1 expression but also maintain the immunomodulatory properties of unmodified MSC sEVs. Next, it is confirmed that FGL1 and PD-L1 on sEVs are specifically bound to their receptors, LAG-3 and PD-1 on target cells. Importantly, FP sEVs significantly inhibite T cell activation and proliferation in vitro and a heart allograft model. Furthermore, FP sEVs encapsulated with low-dose FK506 (FP sEVs@FK506) exert stronger effects on inhibiting T cell proliferation, reducing CD8+ T cell density and cytokine production in the spleens and heart grafts, inducing regulatory T cells in lymph nodes, and extending graft survival. Taken together, dual-targeting sEVs have the potential to boost the immune inhibitory signalings in synergy and slow down transplant rejection.


Assuntos
Antígeno B7-H1/genética , Vesículas Extracelulares/metabolismo , Fibrinogênio/genética , Rejeição de Enxerto/prevenção & controle , Imunossupressores/uso terapêutico , Animais , Antígeno B7-H1/metabolismo , Modelos Animais de Doenças , Fibrinogênio/metabolismo , Rejeição de Enxerto/genética , Transplante de Coração , Humanos , Imunossupressores/metabolismo , Transplante de Rim , Células-Tronco Mesenquimais , Camundongos , Transplantados
16.
Nat Commun ; 12(1): 2698, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976215

RESUMO

Gut microbiome profoundly affects many aspects of host physiology and behaviors. Here we report that gut microbiome modulates aggressive behaviors in Drosophila. We found that germ-free males showed substantial decrease in inter-male aggression, which could be rescued by microbial re-colonization. These germ-free males are not as competitive as wild-type males for mating with females, although they displayed regular levels of locomotor and courtship behaviors. We further found that Drosophila microbiome interacted with diet during a critical developmental period for the proper expression of octopamine and manifestation of aggression in adult males. These findings provide insights into how gut microbiome modulates specific host behaviors through interaction with diet during development.


Assuntos
Agressão/fisiologia , Drosophila melanogaster/fisiologia , Microbioma Gastrointestinal/fisiologia , Octopamina/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Masculino , Atividade Motora/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , RNA Ribossômico 16S/genética , Transdução de Sinais/fisiologia , Organismos Livres de Patógenos Específicos
17.
Sci Robot ; 6(52)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34043546

RESUMO

Swimming biohybrid microsized robots (e.g., bacteria- or sperm-driven microrobots) with self-propelling and navigating capabilities have become an exciting field of research, thanks to their controllable locomotion in hard-to-reach areas of the body for noninvasive drug delivery and treatment. However, current cell-based microrobots are susceptible to immune attack and clearance upon entering the body. Here, we report a neutrophil-based microrobot ("neutrobot") that can actively deliver cargo to malignant glioma in vivo. The neutrobots are constructed through the phagocytosis of Escherichia coli membrane-enveloped, drug-loaded magnetic nanogels by natural neutrophils, where the E. coli membrane camouflaging enhances the efficiency of phagocytosis and also prevents drug leakage inside the neutrophils. With controllable intravascular movement upon exposure to a rotating magnetic field, the neutrobots could autonomously aggregate in the brain and subsequently cross the blood-brain barrier through the positive chemotactic motion of neutrobots along the gradient of inflammatory factors. The use of such dual-responsive neutrobots for targeted drug delivery substantially inhibits the proliferation of tumor cells compared with traditional drug injection. Inheriting the biological characteristics and functions of natural neutrophils that current artificial microrobots cannot match, the neutrobots developed in this study provide a promising pathway to precision biomedicine in the future.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Fármacos por Nanopartículas , Neutrófilos/fisiologia , Robótica/instrumentação , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Quimiotaxia , Doxorrubicina/administração & dosagem , Desenho de Equipamento , Escherichia coli , Géis , Glioma/tratamento farmacológico , Magnetismo , Nanopartículas de Magnetita , Camundongos , Movimento (Física) , Fagocitose
18.
J Neuropathol Exp Neurol ; 80(5): 457-466, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33870420

RESUMO

There are few effective preventive or therapeutic strategies to mitigate the effects of catastrophic intracerebral hemorrhage (ICH) in humans. Heme oxygenase is the rate-limiting enzyme in heme metabolism; heme oxygenase-2 (HO-2) is a constitutively expressed heme oxygenase. We explored the involvement of HO-2 in a collagenase-induced mouse model of ICH in C57BL/6 wild-type and HO-2 knockout mice. We assessed oxidative stress injury, blood-brain barrier permeability, neuronal damage, late-stage angiogenesis, and hematoma clearance using immunofluorescence, Western blot, MRI, and special staining methods. Our results show that HO-2 reduces brain injury volume and brain edema, alleviates cytotoxic injury, affects vascular function in the early stage of ICH, and improves hematoma absorbance and angiogenesis in the late stage of ICH in this model. Thus, we found that HO-2 has a protective effect on brain injury after ICH.


Assuntos
Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/metabolismo , Hemorragia Cerebral/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Neuroproteção/fisiologia , Animais , Barreira Hematoencefálica/patologia , Edema Encefálico/metabolismo , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , Permeabilidade
19.
Aging (Albany NY) ; 12(13): 12869-12895, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32602850

RESUMO

Differences in microRNA (miRNA) expression after intracerebral hemorrhage (ICH) have been reported in human and animal models, and miRNAs are being investigated as a new treatment for inflammation and oxidative stress after ICH. In this study, we found that microRNA-183-5p expression was decreased in the mouse brain after ICH. To investigate the effect of miRNA-183-5p on injury and repair of brain tissue after ICH, saline, miRNA-183-5p agomir, or miRNA-183-5p antagomir were injected into the lateral ventricles of 8-week-old mice with collagenase-induced ICH. Three days after ICH, mice treated with exogenous miRNA-183-5p showed less brain edema, neurobehavioral defects, inflammation, oxidative stress, and ferrous deposition than control mice. In addition, by alternately treating mice with a heme oxygenase-1 (HO-1) inducer, a HO-1 inhibitor, a nuclear factor erythroid 2-related factor (Nrf2) activator, and Nrf2 knockout, we demonstrated an indirect, HO-1-dependent regulatory relationship between miRNA-183-5p and Nrf2. Our results indicate that miRNA-183-5p and HO-1 are promising therapeutic targets for controlling inflammation and oxidative damage after hemorrhagic stroke.


Assuntos
Hemorragia Cerebral/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Heme Oxigenase-1/análise , Heme Oxigenase-1/genética , Inflamação , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL
20.
J Tradit Chin Med ; 40(1): 73-82, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32227768

RESUMO

OBJECTIVE: To develop the chromatographic fingerprint of Lonicera japonica (L. japonica) and evaluate the effects of polyploidy on the quality of L. japonica. METHODS: High-performance liquid chromatography (HPLC) methods used to establish the chromatographic fingerprint were developed. The quality of 11 batches of diploid L. japonica and 13 batches of tetraploid L. japonica collected from different regions across China were analyzed. The contents of five active compounds, consisting of chlorogenic acid, rutin, galuteolin, isochlorogenic acid A and quercetin, were further detected in L. japonica. RESULTS: The chromatographic fingerprint established by the optimized HPLC method was verified for qualitative analysis of L. japonica. Quantitative analysis showed that the contents of chlorogenic acid, isochlorogenic acid A, and quercetin in tetraploid plants were higher than those in diploid plants, whereas rutin and galuteolin contents in tetraploid plants were lower than those in diploid plants. CONCLUSION: The developed HPLC method is suitable for qualitative analysis of L. japonica. Polyploidy was indicated to influence the chemical properties of L. japonica. Tetraploid L. japonica shows potential for utilization as a medicinal plant with different active components.


Assuntos
Cromatografia , Diploide , Lonicera/química , Lonicera/genética , Tetraploidia , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA